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Motivations
I Learning in an unknown environment means to balance

• Exploration • Exploitation
I All theoretically-grounded approaches requires prior knowledge

• This information is hard to get!
• Limit their applicability

I This is about learning without prior knowledge!!!

Online Learning in MDPs
I Markov Decision Process M = {S,A, r, p}
• states: S = SC ∪ ST communicating set:

∀s, s′ ∈ SC, ∃π : Pπ(s→ s′) > 0

transient set: SC ∩ ST = ∅
• actions: A = (As)s∈S
• mean rewards: r(s, a)
• transition probabilities: p(s′|s, a)
• Possible next states: ΓS = max

s∈S,a∈As

‖p(·|s, a)‖0

I Optimality criterion: long-term average reward
For any policy π ∈ ΠSR(M) starting from s ∈ S:

gain: gπM(s) := lim
T→+∞

E

[
1
T

T∑
t=1

r(st, at)
]

bias: hπM(s) := C- lim
T→+∞

E

[
T∑
t=1

(
r(st, at)− gπM (st)

)]
In weakly communicating MDPs:
any optimal policy π∗ ∈ arg max

π
{gπ(s)} has constant gain

I Learning problem: cumulative regret minimization

The true M∗ is un-
known, thus it is g∗ ∆(A, T ) = Tg∗ −

T∑
t=1

rt(st, at)

Asm. 1 The initial state s1 ∈ SC

I Diameter and Span: [Jaksch et al. 2010; Bartlett and Tewari, 2009]

DS = max
s,s′∈S

{
min

π:S→P(A)
Eπ
[
T (s′)

∣∣s] }
spS {h∗} = max

s∈S
{h∗(s)} −min

s∈S
{h∗(s)}

expected time s→ s′

• D depends on all policies (global property)
• spS {h∗} on only π∗
• spS {h∗} ≤D (always)
In weakly communicating MDPs D =∞ but spS {h∗} ≤ ∞

Prior Knowledge & Misspecified states
• UCRL and Opt-PSRL assume communicating MDPs
⇒ all states are reachable
⇒ D < +∞ regret: Õ

(
DS
√

ΓSSAT
)
/ Õ

(
DS
√
SAT

)
• reasonable! but rarely verified in practice

◦ assume learning from images

◦ ”plausible” configurations of bricks,
ball and paddle → state space

Breakout example

initial state s1

×
Non reachable
from s1

there is a hole
in the wall

OK!!

Problem: misspecified state!

• In weakly communicating or misspecified problems (D = +∞)
UCRL and Opt-PSRL  linear regret

• Regal.C and SCAL exploits the knowledge spS {h∗M∗} ≤ H
implicitly “removes” non-reachable states
able to learn in weakly comm. MDPs

regret: Õ
(
H
√

ΓSSAT
)

o knowing H not easier than designing well-specified states

∗similar assumptions in Bayesian regret

Truncated Upper-Confidence for Reinforcement Learning (TUCRL)

Plain OFU (e.g., UCRL) executed on

◦ S and ST 6= ∅ is over-exploring (linear regret)
◦ SC

k ⊆ SC may under-exploration (linear regret)

SC
k :=

{
s ∈ S

∣∣ ∑
a∈As

Nk(s, a) > 0
}
∪ {stk}

Empirical estimate of SC

stk : starting state of episode k

� TUCRL learns in weakly communicating or misspec-
ified problems without prior knowledge

s1

s2

s3

s4s5

SC
k

ST
k

Does this transition s1 → s4 exists? Is s4 ∈ ST
k?

Should be enabled it at episode k? Explore or not?

At episode k we know:
p̂k(s′|s, a)︸ ︷︷ ︸
empirical mean

and |p̃(s′|s, a)− p̂(s′|s, a)| ≤ βsas
′

p,k︸ ︷︷ ︸
confidence interval

TUCRL idea:
“guess” a lower bound ρk to the trans. probabilities
p̂(s′|s, a) + βsas

′

p,k︸ ︷︷ ︸ < ρk ⇒ s→ s′ FORBIDDEN a
Maximum probability given conf. interval

o (ρk)k should be non-increasing!!
Why does TUCRL work?

• reconsiders transitions periodically (i.e., decrease ρk)
⇒ avoid under-exploration

• exploits Bernstein confidence interval:

βsas
′

p,k =

√
ασ2

k(s′|s, a)
Nk(s, a) + β

Nk(s, a)

– (s, a)→ s′ not observed
⇒ σ2

k = 0 and p̂k = 0
⇒ β/Nk(s, a) < ρk

– fast shrinking ≈ O(1/Nk(s, a))
• we set ρk = O(SA/tk) equivalent to removing

transitions s.t.:
Nk(s, a) >

√
tk/SA⇒ p̃(s′|s, a) = 0,∀s′ ∈ ST

k

TUCRL Algorithm

For episode k = 1, 2, . . .

1. Confidence set: TUCRL builds Mk =
{
M = (S,A, r̃, p̃) :

r̃(s, a) ∈ Br,k(s, a), p̃(·|s, a) ∈ Bp,k(s, a)
}
with:

Bp,k(s, a) ={p̃(·|s, a) : ‖p̃(·|s, a)− p̂(·|s, a)‖1 ≤
∑
s′

βsas
′

p,k }

∩ {p̃(·|s, a) : Nk(s, a) >
√
tk/SA⇒ ∀s′ ∈ ST

k, p̃(s′|s, a) = 0}

2. Planning: TUCRL solves (M̃k, π̃k) = arg max
M∈Mk,π

{gπM}

3. Execution: of policy π̃k in the true MDP

Numerical Experiments

s2 s0

s1

a0, r = 1/3

a0, r = 2/3

a0, r = 0

a1, r = 2/3

ST = {s1}

D = +∞ (weakly com.)
◦ UCRL linear regret
◦ SCAL logarithmic regret
◦ TUCRL square-root regret
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Taxi Problem [Dietterich, 2000]
OpenAI gym implementation ⇒ misspecified states
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Regret of TUCRL

∆(TUCRL, T ) = Õ

(
DC
√

ΓCSCAT +
(

DC
)2

S3A

)

• Adaptability to communicating part
DC := DSC

, ΓC := ΓS
C and SC

• Regret due to the early stage
where TUCRL suffers linear regret

If M∗ is communicating
First term: same as UCRL
Second term: bigger than UCRL by a factor SC/ΓC

Exploration-Exploitation Dilemma with infinite diameter
UCRL regret “regimes”

T

E[∆(UCRL, T,M)] O(T ) O(DS
√
AT ln(T ))

O

(
D2S2A

γ
ln(T )

)

0 T †M T ∗M

Regret upper-bound

efficient algorithm: time T †M to achieve sub-
linear regret is polynomial in the parameters of
the MDP
In communicating MDPs, UCRL achieves
sublinear regret in T †M = Õ

(
(DS)2ΓSSA

)
=⇒ efficient algorithm

Without prior knowledge, any efficient learning
algorithm must satisfy T ∗M = +∞ when M has
infinite diameter (i.e., it cannot achieve logarith-
mic regret)

Impossibility result

No logarithmic regret without prior knowledge!
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