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Introduction
What do we do?

I Exploration in continuous MDPs
I With theoretical guarantees

How?

I Using exploration bonus and discretization

Online Learning in MDPs
I Markov Decision Process M = {S,A, r, p}
I Optimality criterion: average reward
For any policy π starting from s ∈ S:

gain: gπ := lim
T→+∞

E

[
1
T

T∑
t=1

r(st, at)
]

bias: hπ(s) := C- lim
T→+∞

E

[
T∑
t=1

(
r(st, at)− gπ

)]

I Learning problem:
cumulative regret minimization

π∗ and g∗
are unknown

∆(A, T ) = Tg∗−
T∑
t=1

rt(st, at)

I Diameter: [Jaksch et al. 2010]

D = max
s,s′∈S

{
min

π:S→P(A)
Eπ
[
T (s′)

∣∣s] }
expected time s→ s′

UCRL2-like Exploration

For k = 1, 2, . . .

1. Estimation of model and uncertainty

Mk = {M = (S,A, p̃, r̃) : p̃(·|s, a) ∈ Bpk(s, a),
r̃(s, a) ∈ Brk(s, a)}

2. Planning for optimistic policy

(Mk, πk) = arg max
M∈Mk

max
π
{gπ(M)}

3. Execution of policy πk
• execute action at ∼ πk
• observe reward rt and next state st+1

I Estimation: Mk is the set of plausible MDP such
that

‖p̃(·|s, a)− p(·|s, a)‖1 ≤ βpk(s, a) ≈

√
SL

Nk(s, a)

|r̃(s, a)− r(s, a)| ≤ βrk(s, a) ≈ rmax

√
L

Nk(s, a)

I Planning: use Extended Value Iteration

vn+1(s) = L̃vn = max
a

{
max

r̃∈Br
k

(s,a)
r̃+ max

p̃∈Bp
k

(s,a)
p̃>vn

}

SCAL+: tabular MDP
I Exploration bonus: Used in deep RL [Bellemare et al.
2016, Tang et al. 2017] and/or when the intrinsic horizon is
known [Azar et al. 2017, Jin et al. 2018]

For k = 1, 2, . . .

1. Estimation of empirical model

Mk = (S,A, p̂ , r̂ + bk )

average transitions

p̂k(s′|s, a) = Nk(s, a, s′)∑
s′ Nk(s, a, s′)

average rewards
exploration

bonus

2. Planning for optimistic policy

πk = argmax
π
{gπ(Mk)}

3. Execution of policy πk Our algorithm:
SCAL+

I Plan using the empirical MDP
I Bonus is used to recover optimism

bk(s, a) ≈ (rmax + c)

√
L

Nk(s, a)
< βrk(s, a) + cβpk(s, a)

Tighter uncertainty
=⇒ better performance

“equivalent”
UCRL2 bonus

o prior knowledge:
rng(h?) = max

s
h?(s)−min

s
h?(s) ≤ c

Prior Knowledge on the Bias Span
I Provides a sense of what is realizable in the true MDP
I Avoids over-optimism
I Necessary to define the exploration bonus

|p̃(·|s, a)− p̂(·|s, a)| ≤ ‖p̃(·|s, a)− p̂(·|s, a)‖1‖h?‖∞

Implicit in other settings
(infinite-horizon discounted,

finite-horizon)

Setting MDP parameter Horizon Knowledge Exploration Bonus

infinite-horizon discounted γ
1

1− γ ‖v?‖∞ ≤
rmax

1− γ Θ̃
(
rmax

1− γ

√
1

Nk(s, a)

)

finite-horizon H H ‖v?‖∞ ≤ rmaxH rmaxH

√
1

Nk(s, a)

average reward ? +∞ rng(h?) ≤ c Θ̃
(
c

√
1

Nk(s, a)

)
o assumption

≈

≈

SCAL+: regret
For any MDP such rng(h?) ≤ c , w.p. 1− δ

R(SCAL+, T ) = Õ

c√T∑
s,a

Γ(s, a)


I Γ(s, a) = ‖p(·|s, a)‖0 (number of next states)

I Worst-case Õ(cS
√
AT )

- as UCRL2 except that D is replaced by c

SCCAL+: continuous MDP
I S is continuous, A is discrete
I MDP (reward and transitions) is Hölder continuous

|r(s, a)− r(s′, a)| ≤ rmaxL |s− s′|α

‖p(·|s, a)− p(·|s′, a)‖1 ≤ L |s− s′|α

I SCCAL+ combines SCAL+ with state aggregation

aggregation

b(I, a) ≈ (c + rmax)
(

1√
Nk(I, a)

+ LMS
−α︸ ︷︷ ︸

bias

)

Regret: for any Hölder MDP w.p. 1− δ

R(SCCAL+, T ) = Õ
(
cL
√
AT (α+2)/(2α+2)

)

Numerical Results
Garnet: tabular MDP
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I SCAL+ can indeed outperform UCRL2

– Continuous MDPs –

Ship Steering:
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RiverSwim:
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I First implementable algorithm with guarantees in
cont. MDPs (lots details are missing here, see paper)
I More stable than model-free version


